Convulsions may alter the specificity of kappa-opiate receptors.

نویسندگان

  • A Mansour
  • E S Valenstein
چکیده

Morphine, a mu-opiate agonist, and ethylketazocine, a kappa-opiate agonist, produce distinct behavioral, pharmacologic, and biochemical effects. In the mouse, large doses of morphine produce convulsions that are usually lethal and that cannot be blocked by naltrexone, whereas ethylketazocine produces nonlethal clonic convulsions that can be blocked by naltrexone. Moreover, mice made tolerant to morphine failed to show cross-tolerance to ethylketazocine, suggesting that the convulsions induced by these drugs are not mediated via a common opioid mechanism. Following a series of electroconvulsive shocks, both morphine and ethylketazocine produced clonic convulsions that were not lethal and that could be blocked by naltrexone. Furthermore, electroconvulsive shock-treated animals made tolerant to morphine-induced convulsions showed cross-tolerance to ethylketazocine. These data suggest that electroconvulsive shock may alter kappa-opioid systems in such a way as to allow mu-agonists to be functional at these sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception

Objective(s): Oxytocin is involved in modulation of many brain-mediated functions. In the present study, we investigated the central effects of oxytocin and its receptor antagonist, atosiban on inflammatory pain. The contribution of opiate receptors was explored using non-selective and selective antagonists. Materials and Methods: The fourth ventricle of the brain of anesthetized rats was impla...

متن کامل

Changes in responsiveness to mu and kappa opiates following a series of convulsions.

After a series of seven electroconvulsive shocks, mice (C57BL/6J) showed a marked change in their response to opiates. Although very large doses of mu agonists induce convulsions in normal control mice, our evidence indicated that this was accomplished through nonopiate mechanisms: they could not be blocked by naltrexone and the pattern of drug potencies (codeine greater than morphine greater t...

متن کامل

Dynorphin selectively augments the M-current in hippocampal CA1 neurons by an opiate receptor mechanism.

Most electrophysiological studies of opioids on hippocampal principal neurons have found indirect actions, usually through interneurons. However, our laboratory recently found reciprocal alteration of the voltage-dependent K(+) current, known as the M-current (I(M)), by kappa and delta opioid agonists in CA3 pyramidal neurons. Recent ultrastructural studies have revealed postsynaptic delta opia...

متن کامل

Mechanisms of action of ibogaine and harmaline congeners based on radioligand binding studies.

Assays using radioligands were used to assess the actions of ibogaine and harmaline on various receptor types. Ibogaine congeners showed affinity for opiate receptors whereas harmaline and harmine did not. The Ki for coronaridine was 2.0 microM at mu-opiate receptors. The Kis for coronaridine and tabernanthine at the delta-opiate receptors were 8.1 and 3.1 microM, respectively. Ibogaine, ibogam...

متن کامل

Opiate-induced enhancement of the effects of naloxone on serum luteinizing hormone levels in the male rat: specificity for Mu agonists.

We have shown previously that acute morphine administration markedly enhances naloxone-induced increases in serum luteinizing hormone (LH) levels in the male rat. The purposes of the present studies were to determine whether this effect was opiate-specific and, if so, whether it was mediated by mu, kappa or sigma opiate receptors. In agreement with our previous reports, we found that naloxone-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 1986